Trending Topics

Implement and configure AWS Backup for VMware Cloud on AWS VM workloads

Image
In our previous post we saw the design of the AWS Backup on VMC. In this post we’re going through the implementation steps As per the design and best practice, we are going to use the ENI for the Backup traffic CREATE A VPC ENDPOINT  TO CREATE AN INTERFACE ENDPOINT FOR AN AWS SERVICE 1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc    2. In the navigation pane, choose Endpoints 3. Choose Create endpoint 4. Name the endpoint   5. For Service category, choose AWS services 6. For Service name, search “ Backup ” and select “ backup-gateway ” service from the dropdown 7. For VPC, select the VPC which we used for SDDC deployment and extension 8. To create an interface endpoint for Amazon S3, you must “uncheck” Additional settings, Enable DNS name. This is because Amazon S3 does not support private DNS for interface VPC endpoints 9. For  Subnets , select one subnet per Availability Zone which we used for SDDC VMC selection  10. For Security group , sel

Linux Configuration



The Linux bonding driver provides a method for aggregating multiple network interfaces into a single logical
bonded interface.The behavior of the bonded interfaces depends upon the mode; generally speaking, modes provide either hot standby or load balancing services.

Additionally, link integrity monitoring may be performed.

You have to install ifenslave, it is a tool to attach and detach slave network interfaces to a bonding device.

    sudo apt-get install ifenslave

Configuring your network interfaces and modules

You need to edit /etc/network/interfaces file and make it looks like

    sudo nano /etc/network/interfaces

Add the following (This is just example enter you ip details)

    # This file describes the network interfaces available on your system
    # and how to activate them. For more information, see interfaces(5).

    # The loopback network interface
    auto lo
    iface lo inet loopback

    # The primary network interface
    auto eth0
    iface eth0 inet static
    address 10.0.0.254
    netmask 255.255.255.0
    gateway 10.0.0.1

    iface eth1 inet manual

    iface eth2 inet manual

    auto bond0
    iface bond0 inet static
    bond_miimon  100
    bond_mode balance-rr
    address  10.0.0.3
    netmask  255.255.255.0
    gateway  10.0.0.1
    up /sbin/ifenslave bond0 eth1 eth2
    down /sbin/ifenslave -d bond0 eth1 eth2

Save and exit the file

Now you need to edit /etc/modprobe.d/aliases.conf file

    sudo nano /etc/modprobe.d/aliases.conf

Add the following lines

    alias bond0 bonding
    options mode=0 miimon=100 downdelay=200 updelay=200

Save and exit the file

If you want more details about modes

mode=0 (balance-rr) Round-robin policy: Transmit packets in sequential order from the first available slave through the last. This mode provides load balancing and fault tolerance.

mode=1 (active-backup) Active-backup policy: Only one slave in the bond is active. A different slave becomes active if, and only if, the active slave fails. The bond’s MAC address is externally visible on only one port (network adapter) to avoid confusing the switch. This mode provides fault tolerance. The primary option affects the behavior of this mode.

mode=2 (balance-xor) XOR policy: Transmit based on [(source MAC address XOR'd with destination MAC address) modulo slave count]. This selects the same slave for each destination MAC address. This mode provides load balancing and fault tolerance.

mode=3 (broadcast) Broadcast policy: transmits everything on all slave interfaces. This mode provides fault tolerance.

mode=4 (802.3ad) IEEE 802.3ad Dynamic link aggregation. Creates aggregation groups that share the same speed and duplex settings. Utilizes all slaves in the active aggregator according to the 802.3ad specification.

* Pre-requisites:
* Ethtool support in the base drivers for retrieving the speed and duplex of each slave.
* A switch that supports IEEE 802.3ad Dynamic link aggregation. Most switches will require some type of configuration to enable 802.3ad mode.

mode=5 (balance-tlb) Adaptive transmit load balancing: channel bonding that does not require any special switch support. The outgoing traffic is distributed according to the current load (computed relative to the speed) on each slave. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed receiving slave.

* Prerequisite: Ethtool support in the base drivers for retrieving the speed of each slave.

mode=6 (balance-alb) Adaptive load balancing: includes balance-tlb plus receive load balancing (rlb) for IPV4 traffic, and does not require any special switch support. The receive load balancing is achieved by ARP negotiation. The bonding driver intercepts the ARP Replies sent by the local system on their way out and overwrites the source hardware address with the unique hardware address of one of the slaves in the bond such that different peers use different hardware addresses for the server.

Restart network services using the following command

    sudo /etc/init.d/networking restart

Popular posts from this blog

HOW TO EDIT THE BCD REGISTRY FILE

DNS Scavenging.

AD LDS – Syncronizing AD LDS with Active Directory